INDIAN STATISTICAL INSTITUTE, BANGALORE CENTRE B.MATH - Third Year, 2018-19

Statistics - IV, Midterm Examination, February 23, 2019 Marks are shown in square brackets. Maximum Marks: 50

1. Consider an $I \times J$ contingency table where the (i, j) cell has probability $p_{ij} > 0$ for $1 \le i \le I$ and $1 \le j \le J$. Show that the row and column factors are independent if and only if

$$\frac{p_{11}p_{ij}}{p_{1j}p_{i1}} = 1 \text{ for all } i \neq 1 \text{ and } j \neq 1.$$
[10]

2. Suppose X_1 and X_2 are i.i.d. continuous random variables, and U be any nonnegative continuous random variable independent of X_1 . Let $Y = X_1 + U$. (a) Show that Y is stochastically larger than X_2 .

(b) Hence, or otherwise show that a χ^2_{k+1} random variable is stochastically larger than a χ^2_k random variable. [15]

3. Suppose $(X_1, Y_1), (X_2, Y_2), \ldots, (X_n, Y_n)$ are i.i.d. observations from a continuous bivariate distribution with c.d.f. F such that F(u, v) = F(v, u) for all u and v. Let I_j be the indicator variable which is defined as $I_j = 1$ if $Y_j - X_j \ge 0$ and 0 otherwise, for $1 \le j \le n$. Show that $(|Y_1 - X_1|, |Y_2 - X_2|, \ldots, |Y_n - X_n|)$ and (I_1, I_2, \ldots, I_n) are independently distributed. [10]

4. Let X_1, X_2, \ldots, X_n be i.i.d. from a continuous distribution with c.d.f. F. Let F_n denote the empirical distribution function, and let $X_{(1)} < X_{(2)} < \ldots < X_{(n)}$ be the order statistics. Then show the following.

(a) $F_n(x)$ converges in probability to F(x) for each x as $n \to \infty$;

(b) $D_n = \sup_{-\infty < x < \infty} |F_n(x) - F(x)|$ converges in probability to 0 as $n \to \infty$;

(c) $F(X_{(j)}) - \frac{j}{n}$ converges in probability to 0 as $n \to \infty$ for any fixed j. [15]